
Copyright © 2018 – P4.org

DVAD41 - Introduction to Data
Plane Programming

Webinar 3 - Tunneling

Copyright © 2018 – P4.org

Exam Module 1

• Proposal:
◦ available: 15th March EOD
◦ Handin: 22nd march 2021

2

Copyright © 2018 – P4.org

Recap on P4

3

Copyright © 2018 – P4.org

Switch OS

Run-time API
Driver

“This is how I want the
network to behave and how to

switch packets…”
(the user / controller

makes the rules)
P4 Programmable Device

P4: Top-down design

4

Network Demands

P4

Feedback

Copyright © 2017 – P4.org

PISA in Action
• Packet is parsed into individual headers (parsed representation)
• Headers and intermediate results can be used for matching and

actions
• Headers can be modified, added or removed
• Packet is deparsed (serialized)

5

Programmable
Parser

Programmable
Deparser

Programmable Match-Action Pipeline

Copyright © 2017 – P4.org

P416 Language Elements

6

Architecture
Description

Extern Libraries

Programmable blocks
and their interfaces

Support for specialized
components

Data Types Bistrings, headers,
structures, arrays

Controls Tables, Actions,
control flow
statements

Parsers

Expressions Basic operations
and operators

State machine,
bitfield extraction

Copyright © 2018 – P4.org

Programming a P4 Target

7

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary
Data PlaneTables Extern

objectsLoad

Target
Vendor supplied

P4 Program

User supplied

Control Plane

Add/remove
table entries

CPU port

Packet-in/outExtern
control

R
U

N
TI

M
E

Copyright © 2018 – P4.org

P416 Parsers

• Parsers are functions that map packets
into headers and metadata, written in a
state machine style

• Every parser has three predefined states
◦ start
◦ accept
◦ reject

• Other states may be defined by the
programmer

• In each state, execute zero or more
statements, and then transition to
another state (loops are OK)

8

start

accept reject

Copyright © 2018 – P4.org

P416 Controls

• Similar to C functions (without loops)

• Can declare variables, create tables, instantiate externs, etc.

• Functionality specified by code in apply statement

• Represent all kinds of processing that are expressible as DAG:
◦ Match-Action Pipelines
◦ Deparsers
◦ Additional forms of packet processing (updating checksums)

• Interfaces with other blocks are governed by user- and
architecture-specified types (typically headers and metadata)

9

Copyright © 2018 – P4.org

P416 Tables

• The fundamental unit of a Match-Action Pipeline
◦ Specifies what data to match on and match kind
◦ Specifies a list of possible actions
◦ Optionally specifies a number of table properties

■ Size
■ Default action
■ Static entries
■ etc.

• Each table contains one or more entries (rules)
• An entry contains:
◦ A specific key to match on
◦ A single action that is executed when a packet matches the entry
◦ Action data (possibly empty)

10

Copyright © 2018 – P4.org

D
irectional

(D
ataPlane)

Param
eters

D
ire

ct
io

nl
es

s
(A

ct
io

n
D

at
a)

Pa

ra
m

et
er

s

Action
Code

Action
Execution

Tables: Match-Action Processing

11

Lookup Key

Key Action ID Action Data

Default
Action ID

Default
Action Data

Hit

Control Plane

Data

Headers and
Metadata

(Input)

Headers and
Metadata
(Output)

A
ction ID

ID

H
it/M

iss
Selector

Headers and Metadata

Copyright © 2018 – P4.org

control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata) {

table ipv4_lpm {
...

}
apply {

...
ipv4_lpm.apply();
...

}
}

Applying Tables in Controls

12

Copyright © 2018 – P4.org

/* From core.p4 */
extern packet_out {

void emit<T>(in T hdr);
}

/* User Program */
control DeparserImpl(packet_out packet,

in headers hdr) {
apply {

...
packet.emit(hdr.ethernet);
...

}
}

P416 Deparsing

13

•Assembles the headers back
into a well-formed packet

•Expressed as a control function
◦ No need for another construct!

•packet_out extern is defined in
core.p4: emit(hdr): serializes
header if it is valid

•Advantages:
•Makes deparsing explicit...

...but decouples from parsing

Copyright © 2018 – P4.org

Why P416?
• Clearly defined semantics
◦ You can describe what your data plane program is doing

• Expressive
◦ Supports a wide range of architectures through standard methodology

• High-level, Target-independent
◦ Uses conventional constructs
◦ Compiler manages the resources and deals with the hardware

• Type-safe
◦ Enforces good software design practices and eliminates “stupid” bugs

• Agility
◦ High-speed networking devices become as flexible as any software

• Insight
◦ Freely mixing packet headers and intermediate results

14

Copyright © 2018 – P4.org

Things we covered

• The P4 ”world view”
◦ Protocol-Independent Packet Processing
◦ Language/Architecture Separation
◦ If you can interface with it, it can be used

• Key data types
• Constructs for packet parsing
◦ State machine-style programming

• Constructs for packet processing
◦ Actions, tables and controls

• Packet deparsing
• Architectures & Programs

15

Copyright © 2018 – P4.org

Things we didn’t cover

• Mechanisms for modularity
◦ Instantiating and invoking parsers or controls

• Details of variable-length field processing
◦ Parsing and deparsing of options and TLVs

• Architecture definition constructs
◦ How these “templated” definitions are created

• Advanced features
◦ How to do learning, multicast, cloning, resubmitting
◦ Header unions
◦ external functions
◦ registers, meters, markers

• Other architectures
• Control plane interface

16

Copyright © 2018 – P4.org

The P4 Language Consortium

• Consortium of academic
and industry members

• Open source, evolving,
domain-specific language

• Permissive Apache license,
code on GitHub today

• Membership is free:
contributions are welcome

• Independent, set up as a
California nonprofit

17

Copyright © 2018 – P4.org

Exercise 1: Recap
• Mentimeter: www.menti.com and enter 204959

18

http://www.menti.com

Copyright © 2018 – P4.org

Running Example: Basic Forwarding
•We’ll use a simple application as a running example—a basic
router—to illustrate the main features of P416

•Basic router functionality:
◦Parse Ethernet and IPv4 headers from packet
◦Find destination in IPv4 routing table
◦Update source / destination MAC addresses
◦Decrement time-to-live (TTL) field
◦Set the egress port
◦Deparse headers back into a packet

•We’ve written some starter code for you (basic.p4) and
implemented a static control plane

19

Copyright © 2018 – P4.org

Basic Forwarding: Topology

20

s1

h1
(10.0.1.1)

s3

s2

h2
(10.0.2.2)

h3
(10.0.3.3)

1
2

3

2
1

3

2 3

1

Copyright © 2018 – P4.org

Coding Homework

21

• Complete the basic.p4
◦ The Ethernet and IPv4 headers have already been defined and added into the

headers struct, but the parser block is empty so you must fill this in.
■ Begin by defining the states we want to use.
■ Parsers must always start in the start state.

◦ Then define a state for the ethernet header as well as a state for the IPv4
header.

■ Packets will always begin with the Ethernet header so transition to the
parse_ethernet state from the start state.

■ In this state, first extract the ethernet header and then branch based on the
etherType field using the select statement that we saw earlier.

■ If the etherType field is equal to the IPV4_TYPE defined above, then transition to the
parse_ipv4 state, otherwise the packet does not contain an IPv4 header so we are
done

■ In the parse_IPv4 state, simply extract the IPv4 header and then you are done.

Copyright © 2018 – P4.org, ONF

Makefile: under the hood

22

test.p4

test.json

si
m

pl
e_

sw
itc

h
 (B

M
v2

)

Program-independent
Control Server

Egress

In
gr

es
s

TM

Parser Deparser

Port Interface

L
o
g

D
e
b
u
g

p4c-bm2-ss

Packet
sniffer

Packet
generator

Linux Kernel
veth0..n

P4
Debugger

simple_switch_CLI
Program-independent
CLI and Client

runtime.json
runtime.json

runtime.json

topology.json

test.json

Copyright © 2018 – P4.org, ONF

Makefile: under the hood (in pseudocode)

23

P4C_ARGS = --p4runtime-file $(basename $@).p4info
--p4runtime-format text

RUN_SCRIPT = ../../utils/run_exercise.py
TOPO = topology.json

dirs:
mkdir -p build pcaps logs

build: for each P4 program, generate BMv2 json file
p4c-bm2-ss --p4v 16 $(P4C_ARGS) -o $@ $<

run: build, then [default target]
sudo python $(RUN_SCRIPT) -t $(TOPO)

stop: sudo mn -c
clean: stop, then

rm -f *.pcap
rm -rf build pcaps logs

Copyright © 2018 – P4.org, ONF

Step 1: P4 Program compilation [build phase]

24

$ p4c-bm2-ss -o test.json test.p4test.p4

p4c-bm2-ss

test.json

test.json is a JSON description of the forwarding
pipeline as compiled from test.p4, which is
required by the bmv2 simple_switch packet-
processing binary

alternatively, can also create a P4info message,
which is a protobuf message which describes
the data-model to be used by the control plane
when generating P4 runtime requests

Copyright © 2018 – P4.org, ONF

Step 2: Starting the model

$ sudo simple_switch --log-console --dump-packet-data 64 \
–i 0@veth0 -i 1@veth2 ... [--pcap]
test.json

prepare veth interfaces first

ip link add name veth0 type veth peer name veth1
for iface in “veth0 veth1”; do

ip link set dev ${iface} up
sysctl net.ipv6.conf.${iface}.disable_ipv6=1
TOE_OPTIONS="rx tx sg tso ufo gso gro lro rxvlan txvlan rxhash”
for TOE_OPTION in $TOE_OPTIONS; do

/sbin/ethtool --offload $intf "$TOE_OPTION”
done

2525

si
m

pl
e_

sw
itc

h
 (B

M
v2

)

Program-independent
Control Server

Egress

In
gr

es
s

TM

Parser Deparser

Port Interface

L
o
g

D
e
b
u
g

Linux Kernel

test.json

veth.pcap
veth.pcap

veth.pcap

Copyright © 2018 – P4.org, ONF

Step 3: Starting the CLI

$ simple_switch_CLI

2626

si
m

pl
e_

sw
itc

h
 (B

M
v2

)

Program-independent
Control Server

Egress

In
gr

es
s

TM

Parser Deparser

Port Interface

L
o
g

D
e
b
u
g

Linux Kernel

test.json

veth.pcap
veth.pcap

veth.pcap

simple_switch_CLI
Program-independent
CLI and Client

TCP Socket (Thrift)

Copyright © 2018 – P4.org, ONF

Step 3: Interacting with the Control Plane

2727

• P4 Program defined packet processing pipeline
◦ Rules within a table are entered by control plane at runtime → P4Runtime
◦ When a rule matches a packet, its action is invoked with parameters

supplied by the control plane as part of the rule.
• For exercises

◦ When booting up Mininet instance, make run will install packet-
processing rules in the tables of each switch (simple_switch_CLI).

◦ These are defined in the sX-commands.txt files, where X corresponds to
the switch number.

• P4Runtime used to install control plane rules.
◦ The content of files sX-runtime.json refer to specific names of tables,

keys, and actions, as defined in the P4Info file build/basic.p4info after
executing make run)

Copyright © 2018 – P4.org, ONF
2828

Step 4: Interacting with Switch using simple_switch_CLI
within simple_switch_CLI
RuntimeCmd: show_tables
m_filter
m_table

RuntimeCmd: table_info m_table
m_table

RuntimeCmd: table_dump m_table
m_table:

RuntimeCmd: table_add m_table m_action 01:00:00:00:00:00&&&01:00:00:00:00:00 => 1 0
Adding entry to ternary match table m_table
[meta.meter_tag(exact, 32)] [ethernet.srcAddr(ternary, 48)]

[ethernet.srcAddr(ternary, 48)]
match key:
action:
runtime data:
SUCCESS
entry has been added with handle 1

RuntimeCmd: table_delete m_table 1
“=>” separates the key from the action data
TERNARY-01:00:00:00:00:00 &&& 01:00:00:00:00:00 m_action

00:00:00:05

Value and mask for
ternary matching. No
spaces around “&&&”

entry priority

key => separates the
key from the action
data

All subsequent
operations use the
entry handle

Copyright © 2018 – P4.org, ONF

test.json

simple_switch_CLI

Step 5: Run the traffic generator and sniffer
In some exercises, this is
send.py and receive.py

In others, we use standard
Linux programs, like ping

Can also use
scapy for sending

p = Ethernet()/IP()/UDP()/”Payload” sendp(p, iface=“veth0”)

scapy for sniffing
sniff(iface=“veth9”, prn=lambda x: x.show())

29

BM
v2

Program-independent
Control Server

Egress

In
gr

es
s

TM

Parser Deparser

Port Interface

L
o
g

D
e
b
u
g

Packet
sniffer

Packet
generator

Linux Kernel
veth0..n

P4
Debugger

Program-independent
CLI and Client

test.json

Copyright © 2018 – P4.org

FAQs

• Can I apply a table multiple times in my P4 Program?
◦ No (except via resubmit / recirculate)

• Can I modify table entries from my P4 Program?
◦ No (except for direct counters), need to do this via control plane

◦ alternatively, can use registers

• What happens upon reaching the reject state of the parser?
◦ Architecture dependent

• How much of the packet can I parse?
◦ Architecture dependent

30

Copyright © 2018 – P4.org

control MyIngress(...) {
table debug {

key = {
std_meta.egress_spec : exact;

}
actions = { }

}
apply {

...
debug.apply();

}
}

Debugging

31

• Bmv2 maintains logs that keep track of
how packets are processed in detail
• /tmp/p4s.s1.log
• /tmp/p4s.s2.log
• /tmp/p4s.s3.log

• Can manually add information to the
logs by using a dummy debug table that
reads headers and metadata of interest

•[15:16:48.145] [bmv2] [D]
[thread 4090] [96.0] [cxt 0]
Looking up key:
* std_meta.egress_spec : 2

Copyright © 2018 – P4.org

Exercise 2: Tunneling
basic_tunnel

32

Copyright © 2018 – P4.org

Basic Tunneling

33

•Tunneling main feature for
○ Data Center networks
○ Mobile Core Networks (e.g. Evolved Packet Core - EPC)
○ Network Virtualization (e.g. VXLAN, GRE, ...)
○ Mobility Management (e.g. Mobile IP)
○ Overlay Routing
○ ...

•How can we implement tunneling?
○ encapsulate a packet into another one by prepending a new header

original packet tunneled packet

Tunnel Header

Copyright © 2018 – P4.org

Basic Tunneling

34

•ToDo: Add support for basic tunneling to the basic IP router in
P4

•Define a new header type (myTunnel) to encapsulate the IP packet
•myTunnel header includes:

○ proto_id : type of packet being encapsulated
○ dst_id : ID of destination host

•Modify the switch to do routing using the myTunnel header

Copyright © 2018 – P4.org

Basic Forwarding: Topology

35

s1

h1
(10.0.1.1)
(dst_id: 1)

s3

s2

h2
(10.0.2.2)
(dst_id: 2)

h3
(10.0.3.3) (dst_id: 3)

1 2
3

1

2 3

12
3

push tunnel header

remove tunnel header

route on tunnel header
(changing inner IP-@ will not
change path)

Copyright © 2018 – P4.org

Basic Tunneling TODO List
• Define myTunnel_t header type and add to headers struct
• Update parser based on ethertype (0x1212: tunnel)
• Define myTunnel_forward action
• Define myTunnel_exact table
• Update table application logic in MyIngress apply statement
• Update deparser
• Adding forwarding rules

◦ myTunnel_ingress rule to encapsulate packets on the ingress switch
◦ myTunnel_forward rule to forward packets on the ingress switch
◦ myTunnel_egress rule to decapsulate and forward packets on the egress

switch
• Read the tunnel ingress and egress counters every 2 seconds

36

