
Copyright © 2018 – P4.org

DVAD41 - Introduction to Data
Plane Programming

Webinar 4 - ECN and Advanced P4
concepts

Copyright © 2018 – P4.org

Announcement
• There will be an assignment in the week after the

module 1 in DVAD40 course.
• Unlock: Mar 15, 12am
• Handin: Mar 22, 11:55pm

• If you need separate assignment for DVAD41 course
module, please let me know.

2

Copyright © 2018 – P4.org

Exercise 2: Recap
• basic_tunnel

3

Copyright © 2018 – P4.org

Basic Tunneling

4

•Tunneling main feature for
○ Data Center networks
○ Mobile Core Networks (e.g. Evolved Packet Core - EPC)
○ Network Virtualization (e.g. VXLAN, GRE, ...)
○ Mobility Management (e.g. Mobile IP)
○ Overlay Routing
○ ...

•How can we implement tunneling?
○ encapsulate a packet into another one by prepending a new header

original packet tunneled packet

Tunnel Header

Copyright © 2018 – P4.org

Basic Tunneling

5

•ToDo: Add support for basic tunneling to the basic IP router in
P4

•Define a new header type (myTunnel) to encapsulate the IP packet
•myTunnel header includes:

○ proto_id : type of packet being encapsulated
○ dst_id : ID of destination host

•Modify the switch to do routing using the myTunnel header

Copyright © 2018 – P4.org

Basic Forwarding: Topology

6

s1

h1
(10.0.1.1)
(dst_id: 1)

s3

s2

h2
(10.0.2.2)
(dst_id: 2)

h3
(10.0.3.3) (dst_id: 3)

1 2
3

1

2 3

12
3

push tunnel header

remove tunnel header

route on tunnel header
(changing inner IP-@ will not
change path)

Copyright © 2018 – P4.org

Basic Tunneling TODO List
• Define myTunnel_t header type and add to headers struct
• Update parser based on ethertype (0x1212: tunnel)
• Define myTunnel_forward action
• Define myTunnel_exact table
• Update table application logic in MyIngress apply statement
• Update deparser
• Adding forwarding rules

◦ myTunnel_forward rule to forward packets on the tunnel header

7

Copyright © 2018 – P4.org

Exercise 3: Monitoring & Debugging
Explicit Congestion Notification - ECN

Copyright © 2018 – P4.org

Monitoring & Debugging

s1

h1
(10.0.1.1)

s3

s2

h3
(10.0.3.3)

h2
(10.0.2.2)

h11
(10.0.1.11)

h22
(10.0.2.22)

Fine …Congestion!

Hosts can infer
congestion:

● RTT
● Packet drops
● Dup Acks

Switches can
help!

9

Copyright © 2018 – P4.org

Monitoring & Debugging

s1
10

Copyright © 2018 – P4.org

Explicit Congestion Notification

TOS

11

Copyright © 2018 – P4.org

Explicit Congestion Notification
•Explicit Congestion Notification
◦00: Non ECN-Capable Transport, Non-ECT
◦10: ECN Capable Transport, ECT(0)
◦01: ECN Capable Transport, ECT(1)
◦11: Congestion Encountered, CE

•For packets originating from ECT, ECN-capable switches set the
CE bit upon congestion
◦E.g., observed queue depth > threshold
◦more details: IETF RFC 3168

■https://tools.ietf.org/html/rfc3168

12

Copyright © 2018 – P4.org

Explicit Congestion Notification in P4
•The standard data for the V1Model includes the queue depth:
bit<19> standard_metadata.enq_qdepth

Traffic
Manager

EgressIngress

Measured here Available here

13

Copyright © 2018 – P4.org

ECN marking

14

•ToDo: Add support for ECN marking to the basic IP router

•Desired behavior:
○ If an end-host supports ECN, it puts the value of 1 or 2 in the ipv4.ecn

field.
○ For such packets, each switch may change the value to 3 if the queue size

is larger than a threshold.
○ The receiver copies the value to sender, and the sender can lower the

rate.

Copyright © 2018 – P4.org

ECN marking in P4

15

•modify ipv4_t to split TOS into DiffServ and ECN
•update checksum accordingly
•In egress, compare queue length with ECN_THRESHOLD

○ if queue is larger, set ECN bits to 3 (bin 11) (congestion encountered)
○ do this only if end-host supports by having set original ECN to 1 or 2

•Define an action to drop a packet which calls mark_to_drop();
•Define an egress control block that checks the ECN and
standard_metadata.enq_qdepth and sets the ipv4.ecn
accordingly
•test your solution by redirecting the receive.py to a log file to
check the TOS

Copyright © 2018 – P4.org

Advanced P4 Constructs
Data Types, Externs, Registers, Meters, etc.

Copyright © 2018 – P4.org

Different Data Types in P4

17

bool Boolean values

bit<W> Bit-strings of width W

int<W> Signed integer of width W

varbit<W> Bit-string with dynamic length (max W)

float no support

string no support

Copyright © 2018 – P4.org

Operators to define composed types in P4

18

Header

header Ethernet_h {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType;

}

We have shown already
struct

HeaderStack

header mpls_h {
bit<20> label;
bit<3> tc;
bit BoS;
bit<8> ttl;

}

mpls_h[8] mpls;

Array of up to 8 MPLS
headers

HeaderUnion

header_union ip_h {
IPv4_h v4;
IPv6_h v6;

}

either IPv4 or IPv6
header

Copyright © 2018 – P4.org

Example Use of Header Stacks - MultiRoute Inspect

19

s1

h1
(10.0.1.1)

s3

s2

h3
(10.0.3.3)

h2
(10.0.2.2)

h11
(10.0.1.11)

h22
(10.0.2.22)

Record switch ID,
queue depth, ...

add switch ID, queue
depth

can infer per switch micro-bursts,
congestion events, latency,..

→ Inband Telemetry (module 3)

Copyright © 2018 – P4.org

Multi-Route Inspect: Packet Format

20

header mri_t {
bit<16> count;

}
header switch_t {

switchID_t swid;
qdepth_t qdepth;

}
struct headers {

ethernet_t ethernet;
ipv4_t ipv4;
ipv4_option_t ipv4_option;
mri_t mri;
switch_t[MAX_HOPS] swtraces;

}

● Header validity operations:
○ hdr.setValid(): add_header
○ hdr.setInvalid(): remove_header
○ hdr.isValid():test validity

● Header Stacks
○ hdr[CNT] stk;

● Header Stacks in Parsers
○ stk.next
○ stk.last
○ stk.lastIndex

● Header Stacks in Controls
○ stk[i]
○ stk.size
○ stk.push_front(int count)
○ stk.pop_front(int count)

Copyright © 2018 – P4.org

State Management in P4

21

•Stateless Objects
◦Variables (metadata), headers,..do not maintain state across packets

•Stateful Objects
◦Tables
◦Externs in P4-14: Counters, Meters, ...keep state across different packets

WriteRequest with theMODIFY update type

Copyright © 2018 – P4.org

P4 Registers

22

•Store arbitrary data (single values or arrays of N entries)
•Definition:

register<Type>(N) reg;
•writing:

reg.write(n, val) //0 <= n <N
•reading into result variable: reg.read(result,n)

0
1

4

<bit<48>>

register <bit<48>>(5) hello;

hello.write(1,0xff);
hello.read(res, 1);

Copyright © 2018 – P4.org

Example: Inter packet gap detection

23

register<bit<32>>(8192) flowlet_lasttimeseen;

action flowlet_gap(out bit<32> delta, bit<32> flow_id)
{

bit<32> last_pkt_seen;

/* Get the time the previous packet was seen for same flow */
flowlet_lasttimeseen.read(last_pkt_seen, flow_id);

/* Calculate the time interval */
delta = standard_metadata.ingress_global_timestamp – last_pkt_seen;

/* Update the register with the new timestamp */
flowlet_lasttimeseen.write(flow_id,

standard_metadata.ingress_global_timestamp);
...

}

Caveat: concurrent
read and write needs
to be synchronized if

required

What is this code
doing?

Copyright © 2018 – P4.org

P4 Counters

24

•used to count packets, bytes or both, formed in arrays
•Definition:

counter(N, Type) my_count;
•Updating:

my_count.count(n)

0
1

4

<bit<32>>

counter (5,CounterType.packets_and_bytes) hello;

hello.count(1); //increases counter at position 1
with current packet size information

enum CounterType {
packets,
bytes,
packets_and_bytes

}

Copyright © 2018 – P4.org

Example: Count incoming packet and bytes per port

25

control MyIngress(...) {

counter(64, CounterType.packets_and_bytes) c;

apply { //ingress port number as index
c.count((bit<32>)standard_metadata.ingress_port);

}
}

Interaction from Control Plane

RuntimeCmd: counter_read MyIngress.c 1 //will then return
MyIngress.c[1] = BmCounterValue(packets=1, bytes=658)

//Note: cannot access counter information from within data plane

Copyright © 2018 – P4.org

Example: counter use

26

control MyIngress(...) {
counter(64, CounterType.packets) c;

action tally() {
c.count((bit<32>) standard_metadata.ingress_port); }

table monitor {
key = {

hdr.ipv4.srcAddr: lpm; }
actions = { tally; NoAction; } }

apply {
...
if(hdr.ipv4.isValid()) {

...
monitor.apply();

}
}

}

{
"table": "MyIngress.monitor",
"match": {

"hdr.ipv4.srcAddr": ["10.0.1.1", 32]
},
"action_name": "MyIngress.tally",
"action_params": { }

}

Question: What this P4 code does?

Copyright © 2018 – P4.org

Example: using direct counters

27

control MyIngress(...) {
direct_counter(CounterType.packets) c;

action tally() {
c.count(); }

table monitor {
key = {

hdr.ipv4.srcAddr: lpm; }
actions = { tally; NoAction; }
counters = c;
size =1024}

apply {
...
if(hdr.ipv4.isValid()) {

...
monitor.apply();

}
}

}

{
"table": "MyIngress.monitor",
"match": {

"hdr.ipv4.srcAddr": ["10.0.1.1", 32]
},
"action_name": "MyIngress.tally",
"action_params": { }

}

● Direct counters are attached to tables
● Each table entry has a counter that

counts upon match

Question: What this P4 code does?

Copyright © 2018 – P4.org

P4 Meters

28

•used to measure packet rates, can be formed in arrays
•Definition: meter(N, Type) my_meter;
•Applying: my_meter.execute(n)
enum MeterType {

packets,
bytes

}
enum MeterColor {

RED, GREEN, YELLOW }

0
1

4

<bit<32>>

meter (5,MeterType.packets) hello;

hello.execute(1);

exceeds Peak Information Rate (PIR) per sec.

exceeds Committed Information Rate (CIR) but still below
PIR per sec.
does not exceed CIR or PIR

more info https://tools.ietf.org/html/rfc2698

Rates set by control plane per instance
meter_set_rates hello 1 0.0001:1 0.0005:1
.0001=> allow 100packets/sec , if the each
packet size is equal to 1000 bytes, then the
obtained throughput can be 100 packets/sec *
1000 (bytes) *8 = 800 kbps

Copyright © 2018 – P4.org

Example: Rate-limitig with meters
• can also use direct meters
• direct meters are attached to table entry

control MyIngress(...){
meter(16384, MeterType.packets) acl_meter;

action color_my_packets(bit<32> index) {
acl_meter.execute_meter((bit<32>)index, meta.meta_tag);

}

table m_read {
key = { hdr.ethernet.srcAddr: exact; }
actions = { color_my_packets; NoAction; }
…
}

table m_filter {
key = { meta.meta_tag: exact; }
actions = { drop; NoAction; }
...

}
apply {

m_read.apply();
m_filter.apply();

}
}

// This is v1 model code
// https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
// meta.meta_tag now holds the color

depending on the
meter tag, treat
packets differently

Question: What this P4 code does?

https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

Copyright © 2018 – P4.org

Example: Rate-limitig with direct meters

@ControlPlaneAPI
{

reset(in MeterColor_t color);
setParams(in S index, in MeterConfig config);
getParams(in S index, out MeterConfig config);

}
*/

control MyIngress(...){
direct_meter(16384, MeterType.packets) acl_meter;

action color_my_packets(bit<32> index) {
acl_meter.read(meta.meta_tag);

}

table m_read {
key = { hdr.ethernet.srcAddr: exact; }
actions = { color_my_packets; NoAction; }
meters = acl_meter;
…
}

table m_filter {
key = { meta.meta_tag: exact; }
actions = { drop; NoAction; }
...

}
apply {

m_read.apply();
m_filter.apply();

}
}

// This is v1 model code
// https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
// meta.meta_tag now holds the color

attach acl_meter to table m_read

https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

Copyright © 2018 – P4.org

Summary

31

●Several Stateful constructs to record and update per flow/packet state
●Useful for many things,
○e.g. congestion tracking, stateful forwarding,....

●Will see some of these concepts applied in next module
○e.g. congestion aware load-balancing

Copyright © 2018 – P4.org

Module Summary - P4

32

• Clearly defined semantics
◦ You can describe what your data plane program is doing

• Expressive
◦ Supports a wide range of architectures through standard methodology

• High-level, Target-independent
◦ Uses conventional constructs
◦ Compiler manages the resources and deals with the hardware

• Type-safe
◦ Enforces good software design practices and eliminates “stupid” bugs

• Agility
◦ High-speed networking devices become as flexible as any software

• Insight
◦ Freely mixing packet headers and intermediate results

Copyright © 2018 – P4.org

Module Summary - P4 things we covered

33

• The P4 world
◦ Protocol Independent Packet Processing
◦ Language/Architecture separation
◦ If you can interface with it, you can use it

• Key data types
• Constructs for packet parsing

◦ state-machine type
• Constructs for packet processing

◦ Actions, tables, controls
• Packet Deparsing
• Architectures and Programs

Copyright © 2018 – P4.org

Module Summary - P4 things we did not cover

34

• Enforcing Modularity
◦ Instantiating and invoking parsers or controls

• Variable Length field processing
◦ parsing and deparsing of TLVs

• Architecture definition constructs
◦ How to create such template definitions

• Advanced features
◦ learning, multicast, cloning, resubmitting
◦ header unions

• Control Plane Interface

Copyright © 2018 – P4.org

Next Module

35

• Datacenter Load-balancing
◦ What is a datacenter
◦ What is data center networking
◦ Traffic characteristics in a data center
◦ Load-balancing techniques for data center networking
◦ P4 based Load-balancing

• When?
◦ March 15th, 17:00 CET

