
DATA PLANE PROGRAMMING

MODULE 2 – DATACENTER NETWORKING AND
LOADBALANCING

HHK3.KAU.SE/DPP

hhk3.kau.se/dpp

• Introduction to Course Module
• Datacenter Traffic Characteristics and Workloads
• Introduction to Datacenter Networks

AGENDA FOR WEBINAR

Please note: The webinar will be recorded. We intend to make available
the video for course participants. When enabling your camera and
microphone, you agree that your video and audio will be recorded and
made available electronically. In case you do not want your video/audio to
be recorded, switch off your video and mic. You can interact with us via
Slack, too.

• Loadbalancing for datacenter networks
– DVAD42: Module 2

COURSE LAYOUT

25.Jan -14.Mar
INTRODUCTION TO DATAPLANE

PROGRAMMING (1.5 ECTS)

DVAD41

15. Mar – 25. April
LOAD BALANCING FOR

DATA-CENTER NETWORKS
(1.5 ECTS)

DVAD42

26. April – 6.June
NETWORK MONITORING
WITH PROGRAMMABLE
DATAPLANES (1.5 ECTS)

DVAD43

• Learning Goals:
– give an account of basic principles and concepts of Data Center

networks, à Today
– give an account of alternative approaches regarding load balancing and

routing for Data Center networks, à Webinar 2
– explain domain-specific concepts related to data plane programming

regarding load balancing for Data Center networks, à Webinar 3
– implement simple data-plane load balancing in P4. à 2 Exercises

MODULE 2 – LOADBALANCING FOR DATACENTER NETWORKS

https://www.kau.se/en/education/programmes-and-
courses/courses/DVAD42

Prerequisite: DVAD41!

https://www.kau.se/en/education/programmes-and-courses/courses/DVAD42

• Everyone:
– Active Participation (Webinar and Slack)
– P4 Tutorials, basic exercises, read papers, watch videos
– Quizz questions
– Discussion posts

• For the Credit bearing course the following is required:
– Submit assignment (graded)
– Quizz and discussion posts

ASSIGNMENTS IN MODULE 2

• Online Schedule
– Webinar 1: Course Introduction and Intro to Datacenter Networking

• NowJ

– Webinar 2: Introduction to Loadbalancing
• Monday, 29th March, 17:00 Stockholm Time

• https://kau-se.zoom.us/j/66276262445

–Webinar 3: P4 based Loadbalancing
• Monday, 12th April, 17:00 Stockholm Time

• https://kau-se.zoom.us/j/66276262445

NEXT ONLINE MEETINGS FOR MODULE 1

https://kau-se.zoom.us/j/66276262445
https://kau-se.zoom.us/j/66276262445

• Go to the course webpage https://hhk3.kau.se/dpp/
– Make yourself familiar with the course homepage
– Read syllabus
– Start to read the papers, watch videos, etc.
– Each module comes with a weekly plan for you.
– Until the next webinar, see online schedule for week 1 and week 2

• Join Slack Channel
– Join link: https://bit.ly/2Arkr0U
– Can also download Slack app

NEXT STEPS

https://hhk3.kau.se/dpp/
https://docs.google.com/document/d/1lkfuiUWgqarE6KuLrWtIFaDDDT5JogrEHhpfGLMrQH4/
https://bit.ly/2Arkr0U

• Questions? à In Slack
• Wrapup and next steps
– Go to menti.com and use the code 2400 4497
–Mentimeter

AGENDA FOR WEBINAR

https://www.mentimeter.com/public/d515ee445b955100ef0defcf64c69d5b

INTRODUCTION TO DATACENTER NETWORKING

• What happens when we search the Web?
• How does a search engine find results so fast?
• Do we crawl the whole Web in real time?
• Can we store the whole web on a single server?
• How many machines do we need for that? 10? 1.000?

WEBSEARCH – WHATS BEHIND THE SCENES?

https://www.flickr.com/photos/44124348109@N01/157722937

– Warehouse computing on millions of commodity servers
– Have massive amount of CPU and disc
– Carry massive amount of traffic

ANSWER: WE USE DATA CENTERS TO SEARCH THE WEB

Tight Integration between Compute, Storage, Network

WEBSEARCH – WHATS BEHIND THE SCENES?

Source: Talk on “Speeding up Distributed Request-Response Workflows” by Virajith Jalaparti at ACM SIGCOMM’13

Request

Response
à Many Co-Flows and multiple parallel TCP incasts

WEBSEARCH – WHATS BEHIND THE SCENES?

Source: Talk on “Speeding up Distributed Request-Response Workflows” by Virajith Jalaparti at ACM SIGCOMM’13

Request

Response
à Many Co-Flows and multiple parallel TCP incasts

Datacenter Networking performance is crucial
• Google: 20% traffic reduction from an extra 500 ms of latency,
• Amazon: every additional 100ms of latency costs 1% loss in revenue

IN DATA CENTER, COMMUNICATION IS CRUCIAL

• Application Performance for Data Center Apps
crucial for the service to be accepted

• Facebook analytics jobs spend 33% of their
runtime in communication

• As in-memory systems proliferate, the network
MUST scale for not become the bottleneck

• Appliction flow:
– A sequence of packets between two endpoints
– Independent unit of allocation, sharing, load

balancing, and prioritization

Framework # peers

Spark 6

Hadoop 10

Yarn 20

COFLOW AND PERFRORMANCE

• Coflow Definition:
– A collection of parallel flows with distibuted endpoints
– Each flow within the CoFlow set is independent

• Performance Aspects
– Job completion time depends on the last flow within a

CoFlow set to complete!
–Many Incoming flows lead to TCP Incast problem

• Switch attached to server typically has small buffers
• many incoming small requests may lead to buffer overflow
à Switch drops packets à bursty retransmit and TCP RTO
• May result in idle time and 90% throughput drop

Framework # peers

Spark > 6

Hadoop > 10

Yarn > 20

WHAT IS IMPORTANT TO A DATA CENTER?

High availability

High efficiency

Smart agility

Security

• Manage the Workload!
– Allows to rapidly install service capacity to scale with demands
– Virtual Machines, docker containers, disk images à deploy, migrate
– Re-assign Resources to match demands à horizontal and vertical scaling

• Manage the storage!
– Allows a server access to persistent data
– Highly distributed filesystems (e.g. HDFS) and key-value stores (e.g. Memcache)

• Manage the Network!
– Allows a server to communicate with other servers, regardless of location
– Vision: provide remote data access as fast as local, many techniques inside OS à

RDMA, Infiniband Verbs, kernel bypass, DPDK, … à How about the network?

DATACENTER MAIN CHARACTERISTIC: ELASTICITY

DATACENTER TRAFFIC CHARACTERISTICS

Figure 3: Mix of jobs in an example cluster with 12 blocks
of servers (left). Fraction of tra�c in each block destined
for remote blocks (right).

width applications had to fit under a single ToR to
avoid the heavily oversubscribed ToR uplinks. Deploy-
ing large clusters was important to our services because
there were many a�liated applications that benefited
from high bandwidth communication. Consider large-
scale data processing to produce and continuously re-
fresh a search index, web search, and serving ads as
a�liated applications. Larger clusters also substan-
tially improve bin-packing e�ciency for job scheduling
by reducing stranding from cases where a job cannot
be scheduled in any one cluster despite the aggregate
availability of su�cient resources across multiple small
clusters.
Maximum cluster scale is important for a more sub-

tle reason. Power is distributed hierarchically at the
granularity of the building, multi-Megawatt power gen-
erators, and physical datacenter rows. Each level of hi-
erarchy represents a unit of failure and maintenance.
For availability, cluster scheduling purposely spreads
jobs across multiple rows. Similarly, the required re-
dundancy in storage systems is in part determined by
the fraction of a cluster that may simultaneously fail as
a result of a power event. Hence, larger clusters lead to
lower storage overhead and more e�cient job scheduling
while meeting diversity requirements.
Running storage across a cluster requires both rack

and power diversity to avoid correlated failures. Hence,
cluster data should be spread across the cluster’s failure
domains for resilience. However, such spreading natu-
rally eliminates locality and drives the need for uni-
form bandwidth across the cluster. Consequently, stor-
age placement and job scheduling have little locality in
our cluster tra�c, as shown in Figure 3. For a rep-
resentative cluster with 12 blocks (groups of racks) of
servers, we show the fraction of tra�c destined for re-
mote blocks. If tra�c were spread uniformly across the
cluster, we would expect 11/12 of the tra�c (92%) to
be destined for other blocks. Figure 3 shows approxi-
mately this distribution for the median block, with only
moderate deviation.
While our traditional cluster network architecture

largely met our scale needs, it fell short in terms of
overall performance and cost. Bandwidth per host was
severely limited to an average of 100Mbps. Packet drops
associated with incast [8] and outcast [21] were severe

Figure 4: A generic 3 tier Clos architecture with edge
switches (ToRs), aggregation blocks and spine blocks. All
generations of Clos fabrics deployed in our datacenters fol-
low variants of this architecture.

pain points. Increasing bandwidth per server would
have substantially increased cost per server and reduced
cluster scale.
We realized that existing commercial solutions could

not meet our scale, management, and cost requirements.
Hence, we decided to build our own custom data center
network hardware and software. We started with the
key insight that we could scale cluster fabrics to near
arbitrary size by leveraging Clos topologies (Figure 4)
and the then-emerging (ca. 2003) merchant switching
silicon industry [12]. Table 1 summarizes a number of
the top-level challenges we faced in constructing and
managing building-scale network fabrics. The following
sections explain these challenges and the rationale for
our approach in detail.
For brevity, we omit detailed discussion of related

work in this paper. However, our topological approach,
reliance on merchant silicon, and load balancing across
multipath are substantially similar to contemporaneous
research [2,15]. In addition to outlining the evolution of
our network, we further describe inter cluster network-
ing, network management issues, and detail our control
protocols. Our centralized control protocols running on
switch embedded processors are also related to subse-
quent substantial e↵orts in Software Defined Network-
ing (SDN) [13]. Based on our experience in the dat-
acenter, we later applied SDN to our Wide Area Net-
work [19]. For the WAN, more CPU intensive tra�c
engineering and BGP routing protocols led us to move
control protocols onto external servers with more plen-
tiful CPU from the embedded CPU controllers we were
able to utilize for our initial datacenter deployments.
Recent work on alternate network topologies such as

HyperX [1], Dcell [17], BCube [16] and Jellyfish [22]
deliver more e�cient bandwidth for uniform random
communication patterns. However, to date, we have
found that the benefits of these topologies do not make
up for the cabling, management, and routing challenges
and complexity.

3. NETWORK EVOLUTION

3.1 Firehose 1.0

Table 2 summarizes the multiple generations of our

185

Figure 4: Per-second traffic locality by system type over a two-minute span: Hadoop (top left), Web server (top right), cache
follower (bottom left) and leader (bottom right) (Note the differing y axes)

inter-datacenter traffic is present in larger quantities. Fron-
tend cluster traffic, including Web servers and the atten-
dant cache followers, stays largely within the cluster: 68%
of Web server traffic during the capture plotted here stays
within the cluster, 80% of which is destined to cache sys-
tems; the Multifeed systems and the SLB servers get 8%
each. While miscellaneous background traffic is present, the
volume of such traffic is relatively inconsequential.

Cache systems, depending on type, see markedly different
localities, though along with Web servers the intra-rack lo-
cality is minimal. Frontend cache followers primarily send
traffic in the form of responses to Web servers (88%), and
thus see high intra-cluster traffic—mostly servicing cache
reads. Due to load balancing (see Section 5.2), this traffic
is spread quite widely; during this two-minute interval the
cache follower communicates with over 75% of the hosts in
the cluster, including over 90% of the Web servers. Cache
leaders maintain coherency across clusters and the backing
databases, engaging primarily in intra- and inter-datacenter
traffic—a necessary consequence of the cache being a "sin-
gle geographically distributed instance." [15]

The stability of these traffic patterns bears special men-
tion. While Facebook traffic is affected by the diurnal traffic
pattern noted by Benson et al. [12], the relative proportions
of the locality do not change—only the total amount of traf-
fic. Over short enough periods of time, the graph looks es-
sentially flat and unchanging. In order to further investigate
the cause and particulars of this stability, we turn our atten-
tion to the traffic matrix itself.

Locality All Hadoop FE Svc. Cache DB
Rack 12.9 13.3 2.7 12.1 0.2 0

Cluster 57.5 80.9 81.3 56.3 13.0 30.7
DC 11.9 3.3 7.3 15.7 40.7 34.5

Inter-DC 17.7 2.5 8.6 15.9 16.1 34.8
Percentage 23.7 21.5 18.0 10.2 5.2

Table 3: Different clusters have different localities; last row
shows each cluster’s contribution to total network traffic

4.3 Traffic matrix
In light of the surprising lack of rack locality and high

degree of traffic stability, we examine traffic from the more
long-term and zoomed-out perspective provided by Fbflow.

Table 3 shows the locality of traffic generated by all of
Facebook’s machines during a 24-hour period in January
2015 as reported by Fbflow. Facebook’s traffic patterns re-
main stable day-over-day—unlike the datacenter studied by
Delimitrou et al. [17]. The clear majority of traffic is intra-
cluster but not intra-rack (i.e., the 12.9% of traffic that stays
within a rack is not counted in the 57.5% of traffic labeled as
intra-cluster). Moreover, more traffic crosses between data-
centers than stays within a rack.

Table 3 further breaks down the locality of traffic gener-
ated by the top-five cluster types which, together, account for
78.6% of the traffic in Facebook’s network. Hadoop clusters
generate the most traffic (23.7% of all traffic), and are sig-
nificantly more rack-local than others, but even its traffic is
far from the 40–80% rack-local reported in the literature [12,

ACM SIGCOMM 2015

ACM SIGCOMM 2015

CONCURRENT FLOWS

• “Web servers and cache hosts have 100s to 1000s of concurrent connections”
• “Hadoop nodes have approximately 25 concurrent connections on average.”
• “median inter-arrival times of approximately 2ms”

• ”median numbers of correspondents for a server are two (other) servers within its
rack and four servers outside the rack”

ACM SIGCOMM 2015

ACM IMC 2009

• Different application flow types
– Large Flows (Elephant)

• Few, carry most volume

– Small Flows (Mice)
• Many, small volume in total

• Traffic patterns
– Highly volatile

• Changing rapidly even during a day

– Highly unpredictable
• Weak correlation

DATACENTER TRAFFIC CHARCTERISTICS

SOSR’16, March 14–15, 2016, Santa Clara, CA, USA

Traffic-aware optimization needs to be done
frequently and rapidly

IMAGES FROM WIKIPEDIA

• Connects servers with each other and the outside world
• Built to optimize cost and performance
• Tiered Architecture

– 3 layers; edge, aggregation, core
– Cheap devices at edges and

expensive devices at core
– Devices typically proprietary and closed

• Over-subscription of links closer to the core
– Fewer links towards core reduce cost
– Trade loss/delay for fewer devices and links

DATACENTER NETWORK

Data Center Network must
provide High Capacity at Ultra

Low Latency

CONVENTIONAL DATACENTER NETWORK

From: “Data Center: Load balancing
Data Center Services”, Cisco 2004

CR CR

AR AR AR AR

. . .

SS

DC-Layer 3

Internet

ToRToR

A AA …

ToRToR

A AA …

. . .

DC-Layer 2
Legend

• CR = Core Router (L3)
• AR = Access Router (L3)
• S = Ethernet Switch (L2)
• ToR = Top of Rack Switch (L2)
• A = Rack of application servers

~ 1,000 servers/pod == IP subnet

Edge

• Layer 2 Problems
– Broadcast must be limited (ARP)
– Spanning tree protocol does not scale well

• Layer 3 problems
– Complex configuration
– Cannot migrate containers and VMs easily without changing IP-@

• Limited server-to-server capacity due to oversubscription
– High port number switches expensive à oversubscription
– Oversubscription ratio: Ratio of ports facing downwards vs. ports facing upwards

(with equal bandwidth ports)
• E.g. Access to core layer: 4:1 oversubscribed, ToR to access 20:1 oversubscribed
• Switch uplinks get heavily loaded à microbursts and congestion

CONVENTIONAL DATACENTER NETWORK PROBLEMS

EXAMPLE TOPOLOGY DESIGNS

Multi-rooted trees, e.g. Fat-tree [SIGCOMM’08]

Bcube [SIGCOMM’10]

Leaf-Spine (2-Tier Clos Network)

Leaf

Scalable nr. of. servers

Spine

Scalable nr. of. Servers by adding larger pods

Jellyfish (random) [NSDI’12]

MULTIROOTED TREE PROPERTIES

Charles E. Leiserson, Fat-trees: universal networks for hardware-efficient supercomputing, IEEE
Transactions on Computers, Vol. 34, no. 10, Oct. 1985, pp. 892-901.

Server
Racks

K Pods
with each K

Switches

Core

Agg

Access

Multi-rooted tree [Fat-tree, Leaf-Spine, …] achieve full
bisection bandwidth assuming perfect multipathing

(k/2)2 core switches
each connects to k pods
àSupports k3/4 hosts
àExample: k=4

MULTIROOTED TREE TRIES TO APPROXIMATE BIG SWITCH

Server
Racks

K Pods
with each K

Switches

Core

Agg

Access

Multi-rooted tree [Fat-tree, Leaf-Spine, …] try to
approximate one big switch abstraction

Too expensive to build L

• Google 2004: Cluster Routers (CR)
– 512 ports à expensive
– Special purpose
– Oversubscription à bottleneck for

intra-rack

• Challenge
– How can we increase capacity?
– How can we approximate one big

switch with cheap commodity
switches using clever load-balancing?

ONE BIG SWITCH APPROXIMATION

ACM SIGCOMM 2015

4 x 1G to CR
40x 1G to server

2 x 10 G to CR
512 x 1G to ToR

Cluster Capacity: 20k servers

MULTIROOTED TREE PROBLEMS

Server
Racks

K Pods
with each K
Switches

Core
Switches

With standard routing, can only exploit a single path

Flow collisions result in suboptimal traffic distribution

Packet based load-balancing results in reordering (TCP!)

IMPLICATIONS FOR DATACENTER NETWORKING

MASSIVE internal network traffic

Complex network shared by many applications

Tight deadlines for network I/O à business impact

Congestion and TCP incast due to many Co-Flows

Low latency and high capacity at same time

Need highly adaptive localized capacity on demand à fine loadbalancing

cheap, scalable, fault tolerance, ...

• Data Center Load Balancing
– Network layer
– ECMP à you will implement in P4
– Conga

• P4 based load balancing
– Hula à you will (partly) implement in P4
–MP-Hula Hula with support for Multipath transport protocols)

NEXT WEBINARS

