
Copyright © 2018 – P4.org

DVAD42 – Load Balancing

P4 programmable Load Balancing:
HULA and MP-HULA

Copyright © 2018 – P4.org

Today’s Webinar agenda
• HULA

◦ Landscape
◦ Load balancing granularity (RECAP)
◦ Background
◦ Introduction
◦ Probes
◦ Best-path identification
◦ HULA – P4 Exercise

• MP-HULA
◦ Introduction
◦ Challenges
◦ HULA Problems for Multipath protocols
◦ Design & Implementation

2

Copyright © 2018 – P4.org

HULA

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Scalable, Adaptable, Programmable

LB Scheme Congestion
aware

Application
agnostic

Dataplane
timescale

Scalable Programmable
dataplanes

ECMP
(Switch)
SWAN, B4
(Controller)
MPTCP
(EndHost)
CONGA
(Switch)
HULA
(Switch)

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Summary
• Scalable to large topologies (in contrast to Conga

which works only for leaf/spine)
◦ HULA distributes congestion state

• Adaptive to network congestion
• Proactive path probing
• Reliable when failures occur
• Programmable in P4

5

Copyright © 2018 – P4.org

HULA - Landscape

Source: Naga Katta et al. Clove: Congestion-Aware Load Balancing at the Virtual Edge

Copyright © 2018 – P4.org

Load balancing granularity (RECAP)
• Load-balancing

granularity: by packet, flow
or flowlet.
◦ Need to avoid reordering

(may lead to TCP timeouts)
• Packet-based load-

balancing
◦ achieves highest granularity
◦ But may lead to reordering

7

2

1

3

4

Copyright © 2018 – P4.org

Load balancing granularity (RECAP)
• Load-balancing granularity:

by packet, flow or flowlet.
◦ Need to avoid reordering (may

lead to TCP timeouts)
• Flow-based load-balancing

◦ achieves lowest granularity
◦ Avoids reordering completely
◦ Flow collisions may lead to

congested or low utilized links

8

Copyright © 2018 – P4.org

Load balancing granularity (RECAP)

d1

*Flowlet Switching (Kandula et al ‘04)

• Load-balancing granularity:
by packet, flow or flowlet.
◦ Need to avoid reordering (may

lead to TCP timeouts)
• Flowlet based load-balancing

◦ Strikes a balance between
granularity while still being able
to utilize all paths properly

◦ Works only for TCP variants
that create packet bursts

◦ Exploits TCPs burstiness

Server
Server

Gap ≥ | d1 - d2 |

Copyright © 2018 – P4.org

Load balancing granularity (RECAP)

Server
Server

d1

Gap ≥ | d1 - d2 |

*Flowlet Switching (Kandula et al ‘04)

• Load-balancing granularity:
by packet, flow or flowlet.
◦ Need to avoid reordering (may

lead to TCP timeouts)
• Flowlet based load-balancing

◦ Strikes a balance between
granularity while still being able
to utilize all paths properly

◦ Works only for TCP variants
that create packet bursts

◦ Exploits TCPs burstiness

Copyright © 2018 – P4.org

Load balancing granularity (RECAP)

d1

Server
Server

d2

Gap ≥ | d1 - d2 |

*Flowlet Switching (Kandula et al ‘04)

• Flowlet summary
• Flowlets are burst of packets.

• Large TCP flows can be splitted into many
small flowlets, given enough inter-packet gap
is detected

• A new flowlet can be switched independently
on a new path, given the inter-packet gap is
large enough to avoid re-ordering (typical
setting: maximum delay difference between
any possible path).

◦ In general, flowlet load balancing will not
cause TCP reordering.

◦ Requires proper setting of flowlet gap
◦ However, some TCP variants create less

bursts (e.g. when using pacing)

Copyright © 2018 – P4.org

CONGA: Design: LB Decisions

• Track path-wise congestion metrics (3 bits) between each pair of leaf
switches

• Send each flowlet on least congested path

H
1

H
2

H
3

H
4

H
5

H
6

H
7

L0 L1 L2

H
9

H
8

Congestion-To-Leaf

Table @L0

De
st
Le
af

Path
0 1 2

L1
L2

3

5
5
1 1 4
3 7 2

1 2 30

L0 è L1: p* = 3
L0 è L2: p* = 0 or 1

12Source: Mohammad Alizadeh et al. CONGA: Distributed Congestion-Aware Load Balancing for Datacenters

Scalability to
large topologies?

Copyright © 2018 – P4.org

HULA - Background
• Main idea: route new flowlets along least-congested

paths (as in Conga) for larger topologies (e.g. fat-tree)

• Main Questions to solve:
• How to infer path congestion?

◦ Periodic probes carry path utilization
◦ Distance-vector like propagation

• How to find and keep track of least congested path?
◦ Each switch chooses best downstream path
◦ Maintains only best next hop
◦ Scales to large topologies

• How to implement on programmable switches?
◦ Programmable at line rate in P4

13

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Background
• Hop-by-hop Utilization-aware Load-balancing

Architecture (HULA)

• Distance-vector like propagation
◦ Periodic probes carry path utilization

• Each switch chooses best downstream path
◦ Maintains only best next hop
◦ Scales to large topologies

• Programmable at line rate
◦ Written in P4.

14

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Background
• Hop-by-hop Utilization-aware Load-balancing

Architecture (HULA)

• Distance-vector like propagation
◦ Periodic probes carry path utilization

• Each switch chooses best downstream path
◦ Maintains only best next hop
◦ Scales to large topologies

• Programmable at line rate
◦ Written in P4.

15

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Probes carry path utilization

16

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

• HULA probes:
• Proactively disseminate network utilization information

to all switches
• Proactively update the network switches with the best

path to any given leaf ToR.
• Flows are split into flowlets

• This minimizes receive-side packet-reordering when a
HULA switch sends different flowlets on different paths

Copyright © 2018 – P4.org

HULA - Probes carry path utilization

17

• The probes originate at the ToRs and are replicated on multiple
paths as they travel the network.

• Once a probe reaches another ToR, it ends its journey.

ToR

Aggregate

Spines

Probe
originates

Probe
replicates

P4 primitives

New header format

Programmable Parsing

RW packet metadata

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Probes carry path utilization

18

S1

S2

S3

S4

ToR 10

ToR ID = 10
Max_util = 50%

ToR 1
Probe

ToR ID = 10
Max_util = 80%

ToR ID = 10
Max_util = 60%

Note: In the exercise, the
information used to determine
the best path is the length of the
queue.

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Best downstream path identification
1. The switch takes the minimum from among the probe given utilization

and stores it in the local routing table.
2. The switch S1 then sends its view of the best path to the upstream

switches (e.g. S1 to ToR1), which processes incoming probes and
repeats this process.

3. Each switch only needs to keep track of the best next hop towards a
destination.

S1

S2

S3

S4

ToR 10
Dst Best hop Path util

ToR 10 S4 50%

ToR 1 S2 10%

… …

ToR 1

Best hop table

Probe

ToR ID = 10
Max_util =

50%

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

ToR ID = 10
Max_util = 50%

ToR ID = 10
Max_util = 80%

ToR ID = 10
Max_util = 60%

Copyright © 2018 – P4.org

HULA - Background
• Hop-by-hop Utilization-aware Load-balancing

Architecture (HULA)

• Distance-vector like propagation
◦ Periodic probes carry path utilization

• Each switch chooses best downstream path
◦ Maintains only best next hop
◦ Scales to large topologies

• Programmable at line rate
◦ Written in P4.

20

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Switches load balance flowlets
• The switches route data packets in the opposite direction.

◦ Each switch independently chooses the best next hop to the destination.
• Once flowlet gap expires, new best path is selected

◦ Can be old one or new better one
◦ Requires that probes arrived with

updated path utilization

21

S1

S2

S3

S4

ToR 10

Dest Best hop Path util

ToR 10 S4 50%

ToR 1 S2 10%

… …

ToR 1

Best hop table

Data

Copyright © 2018 – P4.org

HULA - Switches load balance flowlets

22

S1

S2

S3

S4

ToR 10

Dest Best hop Path util

ToR 10 S4 50%

ToR 1 S2 10%

… …

Dest Timestamp Next hop

ToR
10

1 S4

… …

… …

ToR 1

Flowlet table

Data

Hash

Best hop table

Copyright © 2018 – P4.org

HULA - Background
• Hop-by-hop Utilization-aware Load-balancing

Architecture (HULA)

• Distance-vector like propagation
◦ Periodic probes carry path utilization

• Each switch chooses best downstream path
◦ Maintains only best next hop
◦ Scales to large topologies

• Programmable at line rate
◦ Written in P4.

23

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Programmable at line rate
• HULA requires both stateless and stateful operations to

program HULA’s logic

• Processing a packet in a HULA switch involves switch
state updates at line rate in the packet processing
pipeline.

• HULA maintains a current best hop and replace it in
place when a better probe update is received

• using register read/write

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

HULA - Evaluation
• Different Datacenter Workload traces

25

Copyright © 2018 – P4.org

HULA - Exercises

Goal: implement a simple variant

Copyright © 2018 – P4.org

HULA: Topology

s1

h1
(10.0.1.1)

s3 s2

h2
(10.0.2.2)

h3
(10.0.3.3)

s11
s22

Copyright © 2018 – P4.org

HULA - Headers
header hula_t {
/* 0 is forward path, 1 is the backward path */

bit<1> dir;
/* max qdepth seen so far in the forward path */

qdepth_t qdepth;
/* digest of the source routing list to uniquely
identify each path */

digest_t digest;
}

• hula_t –Header for the HULA probe
packet.

• dir (1bit) – To indicate the direction
of the probe packet

• Qdepth (15bit) – maximum queue
length seen so far (will be updated)

• Digest (32bit) – This field is set by
the ToR to identify the path

generatehula.py

This python script makes each ToR switch generate one HULA probe for
each other ToR and through each separate forward path

Probes can be generated from Control Plane (e.g. Switch CPU). In the
example, they include a digest of the source routing list to uniquely
identify each path and a source routing list that uniquely identifies the
forwarding behavior.

To share the best path information with the source ToRs so
that the sources can use that information for new flows, the
destination ToRs notify source ToRs of the current best path
by returning the HULA probe back to the source ToR
(reverse path) only if the current best path changes.

https://git.cse.kau.se/courses/dvad40/vt19/blob/master/P4lab/exercises/hula/generatehula.py

Copyright © 2018 – P4.org

HULA – Agg & ToR: Tables and actions
#define TOR_NUM 32

* index is set based on dstAddr */
table hula_bwd {

key = {
hdr.ipv4.dstAddr: lpm;

} actions = {
hula_set_nhop;

}
size = TOR_NUM;

}

action hula_set_nhop(bit<32> index) {
dstindex_nhop_reg.write(index,

(bit<16>)standard_metadata.ingress_port); }

register<bit<16>>(TOR_NUM)
dstindex_nhop_reg;

/* At each hop saves the next hop for each flow */
register<bit<16>>(65536) flow_port_reg;

• hula_bwd –Update the next hop to destination ToR
for reverse_path using the hula_set_nhop action by
updating the register dstindex_nhop_reg.

• hula_set_nhop – We store the next hop to reach
each destination ToR

• dstindex_nhop_reg – At each hop, saves the
next hop to reach each destination ToR

• flow_port_reg – At each hop, saves the next hop
for each flow

Example: table_add hula_bwd hula_set_nhop
10.0.1.0/24 => 0

hdr.ethernet.dstAddr index
table_add hula_bwd hula_set_nhop 10.0.2.0/24 => 1
table_add hula_bwd hula_set_nhop 10.0.3.0/24 => 2

Copyright © 2018 – P4.org

table hula_src {
Key = {

hdr_ipv4.srcAddr: exact;
}
actions = {

srcRoute_nhop;
drop;

}
default_action = srcRoute_nhop;
size = 2;

}

action srcRoute_nhop() {
standard_metadata.egress_spec =

(bit<9>)hdr.srcRoutes[0].port;
hdr.srcRoutes.pop_front(1);

}

action drop() {
mark_to_drop();

}

/* At destination ToR, saves the queue depth of
the best path from * each source ToR */
register<qdepth_t>(TOR_NUM) srcindex_qdepth_reg;

• hula_src – Checks the source IP address of a
HULA packet in reverse path. If this switch is the
source, this is the end of reverse path, thus drop
the packet. Otherwise use srcRoute_nhop action
to continue source routing in the reverse path.

• srcRoute_nhop – to perform source routing.

• srcindex_qdepth_reg: At destination ToR
saves queue length of the best path from each
Source ToR

• Example:
table_add hula_src drop 10.0.1.0 =>

register_write srcindex_qdepth_reg 0 256

Removes the first element of the stack. Returns the
number of elements removed. The second element
of the stack becomes the first element, and so on...

HULA – ToR: Tables and actions

30

Copyright © 2018 – P4.org

HULA – Agg & ToR: Tables and actions

31

#define TOR_NUM 32

table hula_nhop {
key = {

hdr.ipv4.dstAddr: lpm;
} actions = {

hula_get_nhop;
drop;

}
size = TOR_NUM;

}
action hula_get_nhop(bit<32> index) {

bit<16> tmp;
dstindex_nhop_reg.read(tmp, index);
standard_metadata.egress_spec =

(bit<9>)tmp;
}
action drop() {

mark_to_drop(std_metadata);
}

• hula_nhop – table for data packets, reads
destination IP/24 to get an index. It uses the
index to read dstindex_nhop_reg register and
get best next hop to the destination ToR.

• hula_get_nhop – It uses the index to read
dstindex_nhop_reg register and get best next
hop to the destination ToR for data packets.

• drop - Drops the packet

Example: table_add hula_nhop hula_get_nhop
10.0.1.0/24 => 0

hdr.ethernet.dstAddr index
table_add hula_nhop hula_get_nhop 10.0.2.0/24 => 1
table_add hula_nhop hula_get_nhop 10.0.3.0/24 => 2

Copyright © 2018 – P4.org

HULA – ToR: Tables and actions
#define TOR_NUM 32
struct metadata {
/* At destination ToR, this is the index of
register that saves qdepth for the best path
from each source ToR */

bit<32> index;
}
* index is set based on dstAddr */
table hula_fwd {

key = {
hdr.ipv4.dstAddr: exact;
hdr.ipv4.srcAddr: exact;

} actions = {
hula_dst;
srcRoute_nhop;

}
default_action = srcRoute_nhop;
size = TOR_NUM + 1;

}
action hula_dst(bit<32> index) {

meta.index = index;
}
action drop() {

mark_to_drop(std_metadata);
}

• hula_fwd –looks at the destination IP of a
HULA packet. If it is the destination ToR, it
runs hula_dst action. Otherwise perform
source routing.

• hula_dst – Set meta.index field based on
source IP (source ToR). The index is used
later to find queue depth and digest of
current best path from that source ToR.
Otherwise, this table just runs
srcRoute_nhop to perform source routing.

• drop – Drops the packet

Copyright © 2018 – P4.org

table dmac {
key = {

standard_metadata.egress_spec : exact;
}
actions = {

set_dmac;
nop;

}
default_action = nop;
size = 16;

}

action set_dmac(macAddr_t dstAddr){
hdr.ethernet.srcAddr =

hdr.ethernet.dstAddr;
hdr.ethernet.dstAddr = dstAddr;

}

action nop() {
}

• dmac – Updates ethernet destination
address based on next hop.

• set_dmac – Sets the destination
macAddr

Example:
table_add dmac set_dmac 1 =>
00:00:00:00:01:01

Output port

Dst macAddr

HULA – ToR: Tables and actions

33

Copyright © 2018 – P4.org

control MyIngress (inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard_metadata)

{

. . .

apply {
if (hdr.hula.isValid()){

if (hdr.hula.dir == 0){
switch(hula_fwd.apply().action_run){

/* if hula_dst action ran, this is the
destination ToR */

hula_dst: {
/*Compare and update the queue size and best

path*/

}else { /* hdr.hula.dir == 1 */
/* update routing table in reverse path */
hula_bwd.apply();
/* drop if source ToR */
hula_src.apply();

}
} else if (hdr.ipv4.isValid()) {

1. Get the hash of the flow
2. Look into the hula table
3. Check if it is a new flowlet

3.1 Check hula path for new flowlets
3.2 Use old port for old flowlet

4. Set the right dmac
}else {

drop();
}

Check if it’s a hula probe packet

Check the direction of the hula
probe

Check if it is a ipv4 packet

We drop packets that are neither
hula nor ipv4

HULA – ToR: Tables and actions (Logic)

Copyright © 2018 – P4.org

HULA – Your Homework for next 2 weeks
• Skeleton code is available

• Hula probe processing already implemented

• Your job
◦ If it is a data packet compute the hash of flow
◦ TODO read nexthop port from flow_port_reg into a temporary variable, say port.
◦ TODO If no entry found (port==0), read next hop by applying hula_nhop table.

Then save the value into flow_port_reg for later packets.
◦ TODO if it is found, save port into standard_metadata.egress_spec to finish

routing.
◦ apply dmac table to update ethernet.dstAddr. This is necessary for the links that

send packets to hosts. Otherwise their NIC will drop packets.
• TODO: An egress control that for HULA packets that are in forward path

(hdr.hula.dir==0)
compares standard_metadata.deq_qdepth to hdr.hula.qdepth in order to save
the maximum in hdr.hula.qdepth

Source: Naga Katta et al. HULA: Scalable Load Balancing Using Programmable Data Planes

Copyright © 2018 – P4.org

MP-HULA

36

Copyright © 2018 – P4.org

Motivation
• Multiple Paths
• Large Bisection Bandwidth

◦ But: at most 25% of core links are highly
utilized à effective load balancing required

• Volatile, Unpredicted Traffic patterns
• Multipath Transport Protocols (e.g.

MPTCP)
◦ Applications enhance their performance

using several paths (e.g. SIRI)
• Symmetric/Assymetric topologies with

different number of layers

Copyright © 2018 – P4.org

ECMP CONGA HULA DRILL CLOVE

GRANULARITY

CONGESTION-
AWARE

CUSTOM-ASIC

PROGRAMMABLE

SCALABLE

MULTIPATH-
TRANSPORT-

AWARE

Not Multipath Transport Aware

E.g. SCTP,
MPTCP, QUIC

HULA - Summary

Copyright © 2018 – P4.org

MP-HULA – Problem statement

FL:1

FL:2

FL:1

FL:2

SF:1 SF:2

0 1

Flowlet gap

SF:1 SF:2
MPTCP 1

TCP Connection 1

TCP Connection 2

The switch does not have contextual
information about MPTCP

Best Next-hop
0

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 1
Best Next-hop

0

FL:1

FL:2

FL:1

FL:2

Flowlet gap

SF:1 SF:2
MPTCP 1

• Most of the Load balancing
schemes are not Multipath
Transport Aware
◦ Sub-flows might be routed over

the same pathà bandwidth
aggregation might be reduced

◦ Redundancy and persistence
might be reduced if
all sub-flows end-up
in a failed link

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 1
Best Next-hop

0

FL:1

FL:2

FL:1

FL:2

Flowlet gap

SF:1 SF:2
MPTCP 1

Ø When both flowlets arrive, the
best next-hop is port 0

Copyright © 2018 – P4.org

MP-HULA – Problem statement

Ø Both flowlets are sent
over port 0. Best Next-
hop is updated but
flowlets are still sent over
the same hop until flowlet
expires

FL:1 FL:1

Best Next-hop
1

0 1

FL:1

FL:2

FL:1

FL:2

SF:1 SF:2

Flowlet gap

SF:1 SF:2
MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

FL:1

Best Next-hop
1

0 1
FL:2

Ø When the flowlet
expires, the new
flowlet is sent over the
current best next-hop
(port 1)

FL:1

FL:2
FL:2

SF:1
SF:1 SF:2

MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

Ø When the flowlet
expires, the new
flowlet is sent over
the current best
next-hop (port 1)

Best Next-hop

1

0 1
FL:2

FL:2
FL:2

SF:1 SF:2
MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

FL:2

Best Next-hop
1

0 1

Ø Best Next-hop is port
1, so we send flowlet 2
over port 1

FL:2
FL:2

SF:1 SF:2
MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 1
Best Next-hop

0

What do we want to achieve instead?

Ø Bandwidth aggregation
Ø Redundancy & Persistence

FL:2

FL:1

FL:2

FL:1

SF:1 SF:2
MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 11st Best Next-hop
0

FL:1
FL:1

2n Best Next-hop
1

What do we want to achieve instead?

FL:2

FL:1

FL:2

FL:1

SF:1 SF:2
MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 11st Best Next-hop
0

FL:1

1) Tracking not only the best next-
hop but k-best hops

2n Best Next-hop
1

FL:2
FL:2

SF:1 SF:2

How can we do it?

SF:1 SF:2
MPTCP 1

FL:1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 11st Best Next-hop
0

FL:1
2) Identifying the MPTCP session
and sub-flows to send their flowlets
over different ports

2n Best Next-hop
1

FL:2
FL:2

SF:1
SF:1 SF:2

MPTCP 1

FL:1

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 11st Best Next-hop
0

2n Best Next-hop
1

FL:2
FL:2

SF:1
SF:1 SF:2

MPTCP 1

2) Identifying the MPTCP session
and sub-flows to send their flowlets
over different ports

Copyright © 2018 – P4.org

MP-HULA – Problem statement

0 11st Best Next-hop
1

FL:2 FL:2

Not aware that this flowlet belongs to the
same MPTCP connection

3) Mark sub-flows belonging to a
specific MPTCP session

2n Best Next-hop
0

FL:2
FL:2

SF:1
SF:1 SF:2

MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – MPTCP Identification Problem
• MPTCP spreads application data

over multiple sub-flows
• MPTCP in general improves

fairness, throughput and
robustness

• Beneficial for long flows (elephant
flows)

0 1
Best Next-hop

0

1. Syn

FL:1

SF:1SF:1
MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – MPTCP Identification Problem
• MPTCP spreads application data

over multiple sub-flows
• MPTCP in general improves

fairness, throughput and
robustness

• Beneficial for long flows (elephant
flows)

0 1
Best Next-hop

0

2. SYN/ACK

FL:1

SF:1SF:1
MPTCP 1

Copyright © 2018 – P4.org

MP-HULA – MPTCP Identification Problem

0 1
Best Next-hop

0

3. ACK

FL:1

SF:1SF:1
MPTCP 1

MPTCP sender/receiver generates
token A and B from {Key A} and
{Key B} for authentication

Copyright © 2018 – P4.org

MP-HULA – MPTCP Identification Problem

0 1
Best Next-hop

0

4. ACK

FL:1

Sender MPTCP A sends the
generated Token B and a random
number (nonce)

FL:1

SF:1SF:1
MPTCP 1

SF:2

Copyright © 2018 – P4.org

MP-HULA – MPTCP Identification Problem

0 1
Best Next-hop

0

5. ACK

FL:1

FL:1

SF:1SF:1
MPTCP 1

SF:2

MPTCP receives the
generated Token A and
validates it.

Copyright © 2018 – P4.org

MP-HULA – MPTCP Identification Problem

0 1
Best Next-hop

0

5. ACK

This node is not aware of the 3-
handshake messages

FL:1

FL:1

SF:1SF:1
MPTCP 1

SF:2

MPTCP sends the generated
authentication code HMAC A and
the connection is initiated.

Copyright © 2018 – P4.org

MP-HULA – Identification and Correlation
• (1) Parse - The ToR parses the MPTCP

option messages carrying the keys and
tokens to (2) identify the MPTCP session
using external function to compute SHA1

• (3) The ToR correlates sub-flows to a given
MPTCP connection

0 1
Best Next-hop

0

SHA1

The ToR parses,
identifies,
correlates and
marks the MPTCP
traffic

FL:1
FL:1

SF:1SF:1
MPTCP 1

SF:2

This node is not aware of the 3-
handshake messages

Copyright © 2018 – P4.org

MP-HULA – Identification and Correlation

0 1
Best Next-hop

0

SHA1

The ToR parses,
identifies,
correlates and
marks the MPTCP
traffic

P4 primitives
Programmable Parsing

RW packet metadata

RW access to stateful memory

Comparison/arithmetic operators

External function

FL:1
FL:1

SF:1SF:1
MPTCP 1

SF:2

This node is not aware of the 3-
handshake messages

Copyright © 2018 – P4.org

MP-HULA – Marking
• (4) Marking - ToR needs to augment

MPTCP data packets by an additional
header to uniquely identify the MPTCP
connection and sub-flow to upper layer
switches.

0 1
Best Next-hop

0

• MPTCP_ID (64 bits) to identify the
MPTCP connection

• Sub-flow_num(4bits) to identify the sub-
flow number within the MPTCP
connection

The ToR parses,
identifies,
correlates and
marks the MPTCP
traffic

FL:1
FL:1

SF:1SF:1
MPTCP 1

SF:2

This node is not aware of the 3-
handshake messages

Copyright © 2018 – P4.org

MP-HULA – Marking

0 1
Best Next-hop

0

• MPTCP_ID (64 bits) to identify the
MPTCP connection

• Sub-flow_num(4bits) to identify the sub-
flow number within the MPTCP
connection

Extra-tables,
registers

The ToR parses,
identifies, correlates
and marks the
MPTCP traffic

P4 primitives
New header format
RW packet metadata

RW access to stateful memory

FL:1
FL:1

SF:1SF:1
MPTCP 1

SF:2

This node is not aware of the 3-
handshake messages

Copyright © 2018 – P4.org

Our Approach – MP-HULA
• MP-HULA Probe Processing

◦ Extended HULA approach to collect k-path
utilization

P4 primitives

New header format

Programmable Parsing

RW packet metadata

Comparison/arithmetic
operators

Each switch maintains a link
utilization estimator per
switch port based on an
exponential moving average
generator (EWMA)

Probe
originate
s at
ToRs

Probe
replicates
through the
network until it
reaches
another ToR

Copyright © 2018 – P4.org

Our Approach – MP-HULA
• MP-HULA Probe Processing

◦ Collect k path utilization

ToR 1

S2

S3

S4

ToR 10

ToR ID = 10
Max_util = 50%

Probe

ToR ID = 10
Max_util = 80%

ToR ID = 10
Max_util = 60%

Dst 1- Best
hop

Path
util

ToR 10 S4 50%

ToR 1 S2 10%

… … ..

Best hop tables (k)

ToR ID = 10
Max_util = 50%

Dst 2- Best
hop

Path
util

ToR 10 S3 60%

ToR 1 S2 10%

… … ..

1st Best next-hop 2n Best next-hop

Copyright © 2018 – P4.org

Our Approach – MP-HULA
• MP-HULA MP-TCP

◦ Switches load balance flowlet
◦ Correlates MPTCP sub-flows to

connection IDs
◦ Routes different sub-flows on different

next hops

ToR 1

S2

S3

S4

ToR 10
P4 primitives
RW access to stateful memory

Comparison/arithmetic operators

Flowlet
ID

Dest Timesta
mp

Sub-flow
ID

MPTCP
ID

Best-hop

HASH1 TOR10 1 1 1 S4

HASH2 TOR10 2 2 1 S3

… … …

Copyright © 2018 – P4.org

Our Approach – MP-HULA

ToR 1

S2

S3

S4

ToR 10

Dst 1- Best
hop

Path
util

ToR 10 S4 50%

ToR 1 S2 10%

… …

Best hop tables (k)

Dst 2- Best
hop

Path
util

ToR 10 S3 60%

ToR 1 S3 20%

… …

MPTCP
ID

Sub-
flow1

Hop1

ID1 1 S4

MPTCP_ID: ID1Sub_flow_num: 1

Dst 3- Best
hop

Path
util

ToR 10 S2 80%

ToR 1 S4 30%

… …

MPTCP
ID

Sub-
flow2

Hop2

Copyright © 2018 – P4.org

Our Approach – MP-HULA

ToR 1

S2

S3

S4

ToR 10

MPTCP_ID: ID1

Sub_flow_num: 2

MPTCP_ID: ID1Sub_flow_num: 1

Dst 1- Best
hop

Path
util

ToR 10 S4 50%

ToR 1 S2 10%

… …

Best hop tables (k)

Dst 2- Best
hop

Path
util

ToR 10 S3 60%

ToR 1 S3 20%

… …

MPTCP
ID

Sub-
flow1

Hop1

ID1 1 S4

Dst 3- Best
hop

Path
util

ToR 10 S2 80%

ToR 1 S4 30%

… …

MPTCP
ID

Sub-
flow2

Hop2

Copyright © 2018 – P4.org

Our Approach – MP-HULA

ToR 1

S2

S3

S4

ToR 10

MPTCP_ID: ID1

Sub_flow_num: 2

MPTCP_ID: ID1Sub_flow_num: 1

MPTCP_ID: ID
1

Sub_flo
w_num: 3

. . .

Dst 1- Best
hop

Path
util

ToR 10 S4 50%

ToR 1 S2 10%

… …

Best hop tables (k)

Dst 2- Best
hop

Path
util

ToR 10 S3 60%

ToR 1 S3 20%

… …

MPTCP
ID

Sub-
flow1

Hop1

ID1 1 S4

Dst 3- Best
hop

Path
util

ToR 10 S2 80%

ToR 1 S4 30%

… …

MPTCP
ID

Sub-
flow2

Hop2

Copyright © 2018 – P4.org

Our Approach – MP-HULA

ToR 1

S2

S3

S4

ToR 10

MPTCP_ID: ID1

Sub_flow_num: 2

MPTCP_ID: ID1Sub_flow_num: 1

MPTCP_ID: ID
1

Sub_flo
w_num: 3

MPTCP_ID: ID1Sub_flow_num: 4

. . .

e.g. Round-robin

Dst 1- Best
hop

Path
util

ToR 10 S4 50%

ToR 1 S2 10%

… …

Best hop tables (k)

Dst 2- Best
hop

Path
util

ToR 10 S3 60%

ToR 1 S3 20%

… …

MPTCP
ID

Sub-
flow1

Hop1

ID1 1 S4

Dst 3- Best
hop

Path
util

ToR 10 S2 80%

ToR 1 S4 30%

… …

MPTCP
ID

Sub-
flow2

Hop2

Copyright © 2018 – P4.org

Evaluation

69

Copyright © 2018 – P4.org

Conclusions
• Data Center Networks

◦ Are crucial for our society
◦ Require effective load-balancing
◦ Control plane scalability issues

• Data plane load balancing
◦ Flexible, P4 programmable (e.g. Hula)
◦ Can exploit multipath transport protocols (e.g. MP-HULA)

• Next Course Module…
◦ Starts Monday, April 26th at 17.00-18.30 CET
◦ P4 based network monitoring, caching and control

■ Streaming algorithms in P4, e.g. Count-min Sketch and Bloom Filter

70

